# TEDAS - Tail Event Driven ASset Allocation: equity and mutual funds' markets

Wolfgang Karl Härdle

Sergey Nasekin

Alla Petukhina

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://case.hu-berlin.de



### Strategies comparison: hedge funds' indices

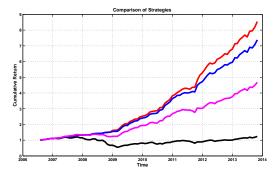


Figure 1: Strategies' cumulative returns' comparison: TEDAS Basic, S&P500, TEDAS Naïve, RR



- Härdle et al. (2014)
  - TEDAS applied to hedge funds' indices performs better than benchmark models
- Limitation of using hedge indices as portfolio assets
- Application of TEDAS approach to global mutual funds' data and German stock market



#### Core & Satellites

#### Mutual funds, SDAX, MDAX and TecDAX constituents

- diversification reduction of the portfolio risk
- construction a more diverse universe of assets
- allocation a higher risk-adjusted return.



□ Comparison of the TEDAS with more benchmark strategies:

- ▶ 60/40 portfolio
- Risk Parity (equal risk portfolio contribution)
- Mean-Variance strategy
- TEDAS parameters optimisation



Motivation — Tail Risk

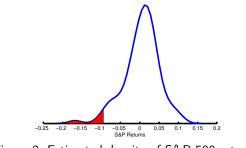


Figure 2: Estimated density of S&P 500 returns



#### The TLND challenge

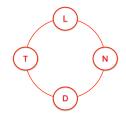
- Tail dependence
- Large universe: p > n
- Non normality
- Dynamics



#### **TEDAS** Objectives

Hedge tail events

- Quantile regression
- Variable selection in high dimensions
- Improve Asset Allocation
  - Higher-order moments' optimization
  - Modelling of moments' dynamics





#### Outline

- 1. Motivation  $\checkmark$
- 2. TEDAS framework
- 3. Data
- 4. Empirical Results
- 5. Discussion: choice of  $\tau$ -spine
- 6. Conclusions

#### **Tail Events**

•

 Y ∈  $\mathbb{R}^n$  core log-returns; X ∈  $\mathbb{R}^{n \times p}$  satellites' log-returns, p > n

$$q_{\tau}(x) \stackrel{\text{def}}{=} F_{Y|x}^{-1}(\tau) = x^{\top}\beta(\tau) = \arg\min_{\beta \in \mathbb{R}^{p}} \mathsf{E}_{Y|X=x} \rho_{\tau}\{Y - X^{\top}\beta\},$$
$$\rho_{\tau}(u) = u\{\tau - \mathsf{I}(u < 0)\}$$

•  $L_1$  penalty  $\lambda_n \|\hat{\omega}^\top \beta\|_1$  to nullify "excessive" coefficients;  $\lambda_n$ and  $\hat{\omega}$  controlling penalization; constraining  $\beta \leq 0$  yields ALQR • Details

$$\hat{\beta}_{\tau,\lambda_n}^{\text{adapt}} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \rho_{\tau} (Y_i - X_i^{\top} \beta) + \lambda_n \| \hat{\omega}^{\top} \beta \|_1 \quad (1)$$

TEDAS - Tail Event Driven Asset allocation



## **TEDAS Step 1**

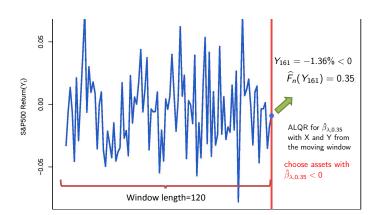
Initial wealth  $W_0 =$ 1, t = 1, ..., n; l = 120 length of the moving window

- Portfolio constituents' selection
  - 1. determine core asset return  $Y_t$ , set  $\tau_t = \hat{F}_n(Y_t)$  $\tau_{j=1,...,5} = (0.05, 0.15, 0.25, 0.35, 0.50)$
  - 2. ALQR for  $\hat{\beta}_{\tau_t,\lambda_n}$  using the observations  $X \in \mathbb{R}^{t-l+1,...,t \times p}$ ,  $Y \in \mathbb{R}^{t-l+1,...,t}$
  - 3. Select  $\tau_{j,t}$  according to the right-side  $\hat{q}_{\tau_{j,t}}$  in:  $Y_t \leq \hat{q}_{\tau_{1,t}}$  or  $\hat{q}_{\tau_{1,t}} < Y_t \leq \hat{q}_{\tau_{j,t}}$



TEDAS framework -

**TEDAS Step 1** 



TEDAS - Tail Event Driven Asset allocation



## TEDAS Step 2

Portfolio selection

- 1. apply TEDAS Gestalt to  $X_j$ , obtain  $\widehat{w}_t \in \mathbb{R}^k$
- 2. determine the realized portfolio wealth for t + 1,  $\widehat{X}_{t+1} \stackrel{\text{def}}{=} (X_{t+1,1}, \dots, X_{t+1,k})^\top$ :  $W_{t+1} = W_t (1 + \widehat{w}_t^\top \widehat{X}_t)$



Rebalancing of portfolio:

- $\boxdot$  one of inequalities in step 3 holds
  - sell the core portfolio and buy satellites (step 4) with estimated weights (step 5)
  - stay "in cash" if there are no adversely moving satellites (step 4)
- no one of inequalities holds: invest in the core portfolio
- period (t+1), if no one of inequalities (step 3) holds, we return to the core portfolio



#### **TEDAS Example**

- 1. Suppose t = 161 (May. 2011), accumulated wealth  $W_{161} = \$2.301, \ Y_{161} = -1.36\% < 0$
- 2.  $\widehat{F}_n(Y_{161}) = 0.35$ , so estimate ALQR for  $\hat{\beta}_{\lambda,0.35}$
- 3. ALQR on  $X \in \mathbb{R}^{120 \times 583}$ ,  $Y \in \mathbb{R}^{120}$  yields  $\hat{\beta}_{0.35} = (-1.12, -0.41)^{\top}$ , Blackrock Eurofund Class I, Pimco Funds Long Term United U.S. States Government Institutional Shares
- 4. TEDAS CF-CVaR optimization  $\widehat{w}_{161} = (0, 1)^{\top}$ ;  $\widehat{X}_{162} = (0.014, 0.026)^{\top}$ ,  $W_{162} = W_{161}(1 + \widehat{w}_{161}^{\top}\widehat{X}_{161}) =$ \$2361



#### **TEDAS Gestalten**

| TEDAS gestalt               | Dynamics modelling                | Weights optimization                                                          |
|-----------------------------|-----------------------------------|-------------------------------------------------------------------------------|
| TEDAS Naïve                 | NO                                | Equal weights                                                                 |
| TEDAS Hybrid<br>TEDAS Basic | NO<br>DCC volatility<br>• Details | Mean-variance optimization<br>of weights  Details CF-VaR optimization Details |



#### Small and mid caps German stocks

MDAX

- 50 medium-sized German public limited companies and foreign companies primarily active in Germany from traditional sectors
- Ranks after the DAX30 based on market capitalisation and stock exchange turnover
- SDAX
  - The selection index for smaller companies from traditional sectors
  - ▶ 50 stocks from the Prime Standard
- TecDAX
  - Comprises the 30 largest technology stocks below the DAX



#### Size premium

- Banz (1981) and Reinganum (1981): the US small cap stocks outperformed large-cap stocks (in 1936-1975)
- Fama, French (1992, 1993): a size premium of 0.27% per month in the US over the period 1963-1991
- Results are robust:
  - ▶ for stock price momentum by Jegadeesh , Titman (1993) and Carhart (1997)
  - for liquidity by Pastor, Stambaugh (2003) and Ibbotson, Hu (2011)
  - for industry factors, high leverage, low liquidity by Menchero et al. (2008)



### Why small and mid cap stocks?

- Strong absolute returns
- Diversification benefits (Eun, Huang, Lai (2006))
- High risk-adjusted returns



## Strong absolute returns

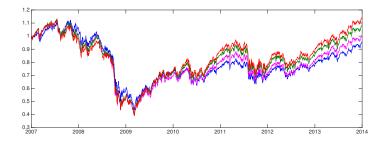


Figure 3: Cumulative index performance: MSCI World Large Cap, MSCI World Mid Cap, MSCI World Small Cap, MSCI World Small and Mid Cap



## Data Diversification

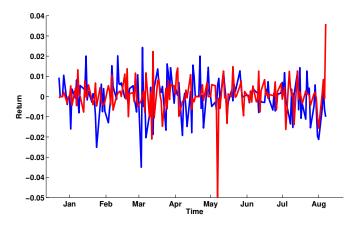
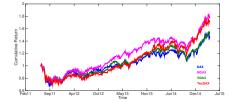


Figure 4: DAX and Hamborner REIT AG daily returns in 20131220-20140831 TEDAS - Tail Event Driven Asset allocation

#### German equity

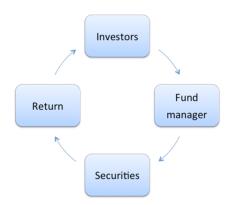
- Frankfurt Stock Exchange (Xetra), weekly data
  - 125 stocks SDAX (48), MDAX (47) and TecDAX (50) as on 20140801
  - DAX index
- Span: 20121221 20141127 (100 trading weeks)
- Source: Datastream





- Open-End: buy and sell the shares, meet the demand for customers
- Unit Investment Trust: exchange-traded fund (ETF), Fixed/ unmanaged Portfolio
- Closed-End: fixed number of shares, not redeemable by the fund, buy and sell on the exchange





#### Why Mutual Funds?

#### Importance of MF

- \$30 trillion worldwide, 15 trillion in U.S in 2013
- 88% investment companies managed asset by holding MF
- Big data: 76 200 MFs worldwide in 2013
- Diversification

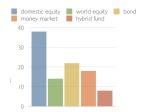


Figure 5: Structure of U.S. Mutual funds, by asset classes



## Dynamics of Mutual funds investment

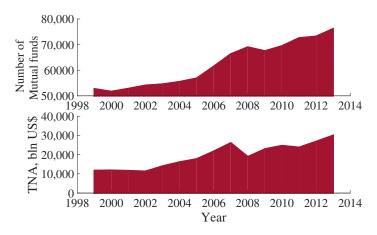


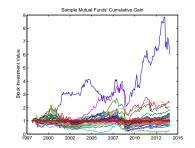
Figure 6: Worldwide Mutual Funds: total number and TNA

Data

#### **Mutual Funds**

#### Monthly data

- ► Core asset (Y): S&P500
- Satellite assets (X): 583 Mutual funds
- Span: 19980101 20131231 (192 months)
- 🖸 Source: Datastream





#### 3-12

#### **Benchmark Strategies**

- 1. RR: dynamic risk-return optimization Details
- 2. ERC: Risk-parity portfolio (equal risk contribution) Details
- 3. 60/40 portfolio Details



#### **TEDAS** approach:German stocks' results

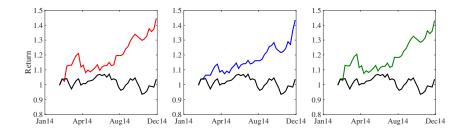


Figure 7: Strategies' cumulative returns' comparison: TEDAS Basic, TEDAS Naïve, TEDAS Hybrid, DAX30 Q TEDAS strategies

TEDAS - Tail Event Driven Asset allocation -



#### **TEDAS** approach:German stocks' results

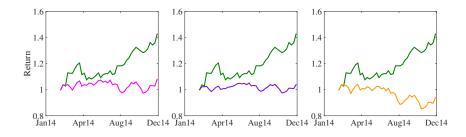


Figure 8: Strategies' cumulative returns' comparison (with transaction costs 1% of portfolio value): TEDAS Hybrid, 60/40, ERC, RR

**Q** TEDAS \_strategies



#### Strategies' performance: German stocks

| Strategy           | Cumulative | Sharpe  | Maximum  |
|--------------------|------------|---------|----------|
| Strategy           | return     | ratio   | drawdown |
| TEDAS Basic        | 144%       | 0.3792  | 0.1069   |
| <b>TEDAS</b> Naïve | 143%       | 0.3184  | 0.0564   |
| TEDAS Hybrid       | 143%       | 0.3079  | 0.1068   |
| RR                 | 108%       | 0.0687  | 0.0934   |
| ERC                | 129%       | -0.0693 | 0.1792   |
| 60/40              | 121%       | 0.0306  | 0.0718   |
| DAX30              | 103%       | 0.0210  | 0.1264   |



#### **TEDAS** approach:German stocks' results

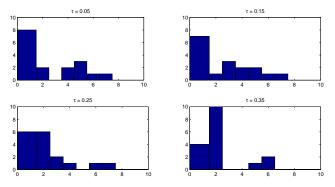
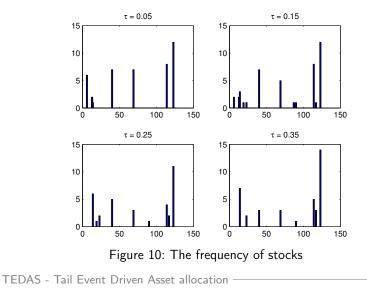


Figure 9: Frequency of the number of selected variables for 4 different  $\tau$ 



#### **TEDAS** approach:German stocks results





#### **Selected Stocks**

#### Table 1: The selected German Stocks for $\tau=0.05$

| Top 5 influential Stocks     | Frequency | Index  | Industry                            |
|------------------------------|-----------|--------|-------------------------------------|
| Sartorius Aktiengesellschaft | 12        | TecDAX | Provision of laboratory and process |
|                              |           |        | technologies and equipment          |
| XING AG                      | 8         | TecDAX | Online business communication ser-  |
|                              |           |        | vices                               |
| Surteco SE                   | 7         | SDAX   | Household Goods & Home Construc     |
|                              |           |        | tion                                |
| Kabel Deutschland Holding AG | 7         | MDAX   | Cable-based telecommunication ser-  |
|                              |           |        | vices                               |
| Biotest AG                   | 6         | MDAX   | Producing biological medications    |



Empirical Results

## $-\widehat{\beta}$ in each window, $\tau = 0.05$

Figure 11: Different  $-\widehat{eta}$  in application; au= 0.05 • Selected Stocks

TEDAS - Tail Event Driven Asset allocation



#### **TEDAS** approach:Mutual Funds results

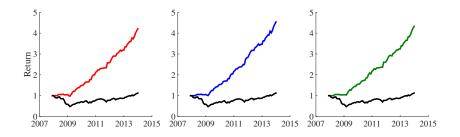


Figure 12: Strategies' cumulative returns' comparison: TEDAS Basic, TEDAS Naïve, TEDAS Hybrid, S&P500

**Q** TEDAS strategies



## **TEDAS** approach:Mutual Funds results

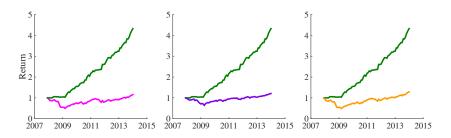


Figure 13: Strategies' cumulative returns' comparison (with transaction costs 1% of portfolio value): TEDAS Hybrid, 60/40, ERC, RR

**Q** TEDAS\_strategies



4-9

## Strategies' performance: Mutual funds

| Strategy           | Cumulative | Sharpe | Maximum  |
|--------------------|------------|--------|----------|
| Strategy           | return     | ratio  | drawdown |
| TEDAS Basic        | 421%       | 0.6393 | 0.0855   |
| <b>TEDAS</b> Naïve | 454%       | 0.6974 | 0.0583   |
| TEDAS Hybrid       | 433%       | 0.6740 | 0.0276   |
| RR                 | 116%       | 0.0214 | 0.4772   |
| ERC                | 129%       | 0.0487 | 0.4899   |
| 60/40              | 121%       | 0.0252 | 0.3473   |
| S&P500             | 113%       | 0.0132 | 0.5037   |



## **TEDAS** approach:Mutual Funds results

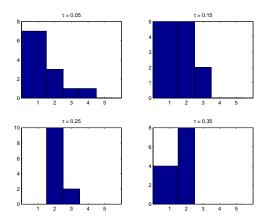
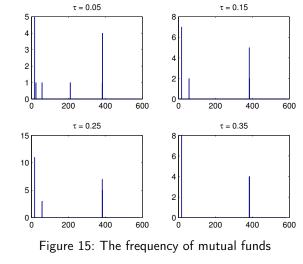


Figure 14: Frequency of the number of selected variables for 4 different au



## **TEDAS** approach:Mutual Funds results



TEDAS - Tail Event Driven Asset allocation

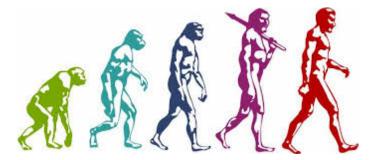


#### Selected Mutual Funds

Table 2: The selected Mutual Funds for  $\tau=0.05$ 

| Top 5 influential Stocks        | Frequency | Market |
|---------------------------------|-----------|--------|
| Blackrock Eurofund Class I      | 12        | U.S.   |
| Pimco Funds Long Term United    | 8         | U.S.   |
| States Government Institutional |           |        |
| Shares                          |           |        |
| Prudential International Value  | 4         | U.S.   |
| Fund Class Z                    |           |        |
| Artisan International Fund In-  | 3         | U.S.   |
| vestor Shares                   |           |        |
| American Century 20TH Cen-      | 1         | U.S.   |
| tury International Growth In-   |           |        |
| vestor Class                    |           |        |
|                                 |           |        |

#### How to choose optimal $\tau$ -spine?





#### Generation of different $\tau$ -spines

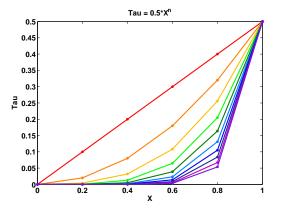


Figure 16: Generation of 10 sets of  $\tau$ -spines

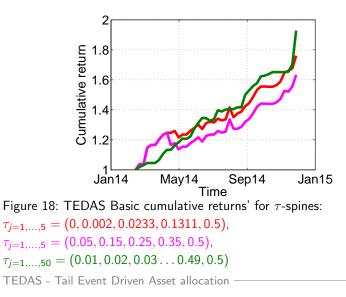


#### **TEDAS** Basic with different $\tau$ -spines

#### Figure 17: Cumulative return for TEDAS Basic with various $\tau\text{-spines}$



#### **TEDAS** Basic with different $\tau$ -spines





#### What is the best $\tau$ -spine?

#### Monte Carlo simulations

• 
$$Y_i = \hat{q}_{\tau_i} \ \tau_{j=1,2,3} = (0.05, 0.15, 0.35), \ n = 100,$$
  
 $Y_t \sim ALD(\mu, \sigma, \tau);$  • Details

• 
$$X_i \sim N(0, \Omega), n = 100$$
 for every  $\tau, p = 150,$   
 $\beta = (-5, -2, -1, 3, 1, 0.5, 0, ..., 0), \varepsilon_i \sim N(0, \sigma^2);$   
 $\lambda_n = 0.25 \sqrt{\|\hat{\beta}^{\text{init}}\|_0} \log(n \lor p) (\log n)^{0.1/2}, \hat{\omega}_j = 1/|\hat{\beta}^{\text{init}}_j| \land \sqrt{n};$   
 $\hat{\beta}^{\text{init}}_j;$ 

$$\odot \ \Omega_{i,j} = 0.5^{|i-j|}$$
,  $\sigma = 0.1, 0.5, 1$  (three levels of noise);



#### What is the best $\tau$ -spine?

: for  $\hat{\beta}^{\text{init}}$  estimator  $\hat{\beta}_{\tau,\hat{\lambda}}$  from the model (2) is used, where  $\hat{\lambda}$  is chosen according to the BIC criterion

$$\mathsf{BIC}_{\lambda_n,\tau} \stackrel{\text{def}}{=} \log \left\{ n^{-1} \cdot \sum_{i=1}^n \rho_\tau (Y_i - X_i^\top \hat{\beta}_\tau) \right\} + \frac{\log(n)}{2n} \cdot \widehat{\mathsf{df}}(\lambda_n)$$

Apply one of TEDAS modification with different *τ*-spines
 Choose that *τ*-spine, which gives the highest wealth

$$W_i = \sum_{j=1}^d w_j x_{i,\tau} \,,$$



#### Conclusions

- TEDAS solves TLND challenge
- TEDAS approach performs better than traditional benchmark strategies
- TEDAS outperforms for
  - different regions (global and Germany),
  - various assets
  - alternative time periods (daily, weekly and monthly),
  - big data and small data
- Results for 3 gestalts of TEDAS are robust
- Discussion:
  - How to choose optimal  $\tau$ -spine?



# TEDAS - Tail Event Driven ASset Allocation: equity and mutual funds' markets

Wolfgang Karl Härdle

Sergey Nasekin

Alla Petukhina

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://case.hu-berlin.de









#### Lasso Shrinkage

Linear model:  $Y = X\beta + \varepsilon$ ;  $Y \in \mathbb{R}^n$ ,  $X \in \mathbb{R}^{n \times p}$ ,  $\beta \in \mathbb{R}^p$ ,  $\{\varepsilon_i\}_{i=1}^n$ i.i.d., independent of  $\{X_i; i = 1, ..., n\}$ 

The optimization problem for the lasso estimator:

$$\hat{eta}^{ ext{lasso}} = rg \min_{eta \in \mathbb{R}^p} f(eta) \ ext{subject to} \quad g(eta) \geq 0$$

where

$$f(\beta) = \frac{1}{2} (y - X\beta)^{\top} (y - X\beta)$$
$$g(\beta) = t - \|\beta\|_1$$

where t is the size constraint on  $\|\beta\|_1 
ightarrow ext{Back to "Tail Events"}$ 

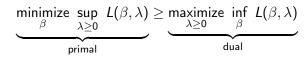


## Lasso Duality

If (1) is convex programming problem, then the Lagrangian is

$$L(\beta, \lambda) = f(\beta) - \lambda g(\beta).$$

and the primal-dual relationship is



Then the dual function  $L^*(\lambda) = \inf_{\beta} L(\beta, \lambda)$  is

$$L^*(\lambda) = \frac{1}{2} y^\top y - \frac{1}{2} \hat{\beta}^\top X^\top X \hat{\beta} - t \frac{(y - X \hat{\beta})^\top X \hat{\beta}}{\|\hat{\beta}\|_1}$$

with  $(y - X \hat{eta})^ op X \hat{eta} / \| \hat{eta} \|_1 = \lambda$  ( Back to "Tail Events")



## Paths of Lasso Coefficients

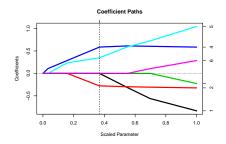


Figure 19: Lasso shrinkage of coefficients in the hedge funds dataset example (6 covariates were chosen for illustration); each curve represents a coefficient as a function of the scaled parameter  $\hat{s} = t/||\beta||_1$ ; the dashed line represents the model selected by the BIC information criterion ( $\hat{s} = 3.7$ )

## Example of Lasso Geometry

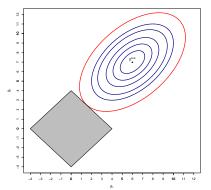


Figure 20: Contour plot of the residual sum of squares objective function centered at the OLS estimate  $\hat{\beta}^{ols} = (6,7)$  and the constraint region  $\sum |\beta_j| \le t$  Q MVAlassocontour



#### **Quantile Regression**

The loss  $\rho_{\tau}(u) = u\{\tau - I(u < 0)\}$  gives the (conditional) quantiles  $F_{y|x}^{-1}(\tau) \stackrel{\text{def}}{=} q_{\tau}(x).$ 

Minimize

$$\hat{eta}_{ au} = rg \min_{eta \in \mathbb{R}^p} \sum_{i=1}^n 
ho_{ au}(Y_i - X_i^{ op}eta).$$

Re-write:

$$\underset{(\xi,\zeta)\in\mathbb{R}^{2n}_+}{\text{minimize}} \quad \left\{\tau\mathbf{1}_n^{\top}\xi + (1-\tau)\mathbf{1}_n^{\top}\zeta | X\beta + \xi - \zeta = Y\right\}$$

with  $\xi$ ,  $\zeta$  are vectors of "slack" variables  $\bullet$  Back to "Tail Events"



Technical details

## Non-Positive (NP) Lasso-Penalized QR

The lasso-penalized QR problem with an additional non-positivity constraint takes the following form:

 $\begin{array}{ll} \underset{(\xi,\zeta,\eta,\tilde{\beta})\in\mathbb{R}^{2n+p}\times\mathbb{R}^{p}}{\text{minimize}} & \tau\mathbf{1}_{n}^{\top}\xi+(1-\tau)\mathbf{1}_{n}^{\top}\zeta+\lambda\mathbf{1}_{n}^{\top}\eta\\ \text{subject to} & \xi-\zeta=Y+X\tilde{\beta},\\ & \xi\geq 0,\\ & \zeta\geq 0,\\ & \eta\geq \tilde{\beta},\\ & \eta\geq -\tilde{\beta},\\ & \tilde{\beta}\geq 0, \quad \tilde{\beta}\stackrel{\text{def}}{=}-\beta \end{array}$  (3)





Technical details -Solution

Transform into matrix  $(I_p \text{ is } p \times p \text{ identity matrix}; E_{p \times n} = \begin{pmatrix} I_n \\ 0 \end{pmatrix})$ :

T

where 
$$A = \begin{pmatrix} I_n & -I_n & 0 & X \end{pmatrix}$$
,  $b = Y$ ,  $x = \begin{pmatrix} \xi & \zeta & \eta & \beta \end{pmatrix}^{\top}$ ,

$$c = \begin{pmatrix} \tau \mathbf{1}_n \\ (1-\tau)\mathbf{1}_n \\ \lambda \mathbf{1}_p \\ 0\mathbf{1}_p \end{pmatrix}, \quad B = \begin{pmatrix} -E_{p \times n} & 0 & 0 & 0 \\ 0 & -E_{p \times n} & 0 & 0 \\ 0 & 0 & -I_p & I_p \\ 0 & 0 & 0 & -I_p & -I_p \\ 0 & 0 & 0 & 0 & I_p \end{pmatrix}$$



## Solution - Continued

The previous problem may be reformulated into standard form

 $\begin{array}{ll} \mbox{minimize} & c^\top x \\ \mbox{subject to} & Cx = d, \\ & x+s = u, \ x \geq 0, s \geq 0 \end{array}$ 

and the dual problem is:

maximize 
$$d^{\top}y - u^{\top}w$$
  
subject to  $C^{\top}y - w + z = c, \ z \ge 0, w \ge 0$ 



Technical details -

#### Solution - Continued

The KKT conditions for this linear program are

$$F(x, y, z, s, w) = \left\{ \begin{array}{c} Cx - d \\ x + s - u \\ C^{\top}y - w + z - c \\ x \circ z \\ s \circ w \end{array} \right\} = 0,$$

with  $y \ge 0$ ,  $z \ge 0$  dual slacks,  $s \ge 0$  primal slacks,  $w \ge 0$  dual variables.

This can be solved by a primal-dual path following algorithm based on the  $\it Newton\ method$ 

▶ Back to "Tail Events"



## Adaptive Lasso Procedure

Lasso estimates  $\hat{\beta}$  can be inconsistent (Zou, 2006) in some scenarios.

Lasso soft-threshold function gives biased results

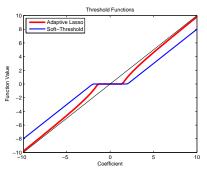


Figure 21: Threshold functions for simple and adaptive Lasso



## Adaptive Lasso Procedure

The adaptive Lasso (Zou, 2006) yields a sparser solution and is less biased.

 $L_1$  - penalty replaced by a re-weighted version;  $\hat{\omega}_j = 1/|\hat{\beta}_j^{\text{init}}|^{\gamma}$ ,  $\gamma = 1$ ,  $\hat{\beta}^{\text{init}}$  is from (2)

The adaptive lasso estimates are given by:

$$\hat{\beta}_{\lambda}^{\text{adapt}} = \arg \min_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} (Y_{i} - X_{i}^{\top}\beta)^{2} + \lambda \|\hat{\omega}^{\top}\beta\|_{1}$$

(Bühlmann, van de Geer, 2011):  $\hat{\beta}_j^{\text{init}} = 0$ , then  $\hat{\beta}_j^{\text{adapt}} = 0$ • Back to "Tail Events"

## Simple and Adaptive Lasso Penalized QR

Simple lasso-penalized QR optimization problem is:

$$\hat{\beta}_{\tau,\lambda} = \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \rho_\tau (Y_i - X_i^\top \beta) + \lambda \|\beta\|_1$$
(4)

Adaptive lasso-penalized QR model uses the re-weighted penalty:

$$\hat{\beta}_{\tau,\lambda}^{\text{adapt}} = \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \rho_\tau (Y_i - X_i^\top \beta) + \lambda \| \hat{\omega}^\top \beta \|_1$$
(5)

Adaptive lasso-penalized QR procedure can ensure oracle properties for the estimator 
Details
Back to "Tail Events"



## Algorithm for Adaptive Lasso Penalized QR

The optimization for the adaptive lasso quantile regression can be re-formulated as a lasso problem:

• the covariates are rescaled:  $\tilde{X} = (X_1 \circ \hat{\beta}_1^{\text{init}}, \dots, X_p \circ \hat{\beta}_p^{\text{init}});$ 

 $\odot$  the lasso problem (4) is solved:

$$\hat{\tilde{\beta}}_{\tau,\lambda} = \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \rho_\tau (Y_i - \tilde{X}_i^\top \beta) + \lambda \|\beta\|_1$$

: the coefficients are re-weighted as  $\hat{\beta}_{\tau,\lambda}^{\rm adapt}=\hat{\hat{\beta}}_{\tau,\lambda}\circ\hat{\beta}^{\rm init}$ 

▶ Back to "Tail Events"



## Oracle Properties of an Estimator

An estimator has oracle properties if (Zheng et al., 2013):

- it selects the correct model with probability converging to 1;
- the model estimates are consistent with an appropriate convergence rate;
- estimates are asymptotically normal with the same asymptotic variance as that knowing the true model



Back to "Simple and Adaptive Lasso Penalized QR"

#### Oracle Properties for Adaptive Lasso QR

In the linear model, let  $Y = X\beta + \varepsilon = X^1\beta^1 + X^2\beta^2 + \varepsilon$ , where  $X = (X^1, X^2)$ ,  $X^1 \in \mathbb{R}^{n \times q}$ ,  $X^2 \in \mathbb{R}^{n \times (p-q)}$ ;  $\beta_q^1$  are true nonzero coefficients,  $\beta_{p-q}^2 = 0$  are noise coefficients;  $q = \|\beta\|_0$ .

Also assume that  $\lambda q/\sqrt{n} \to 0$  and  $\lambda/{\sqrt{q} \log(n \lor p)} \to \infty$  and certain regularity conditions are satisfied  $\frown$  Details

## Oracle Properties for Adaptive Lasso QR

Then the adaptive  $L_1$  QR estimator has the oracle properties (Zheng et al., 2013):

1. Variable selection consistency:

$$\mathsf{P}(eta^2=0)\geq 1-6\exp\left\{-rac{\log(nee p)}{4}
ight\}.$$

- 2. Estimation consistency:  $\|\beta \hat{\beta}\| = \mathcal{O}_p(\sqrt{q/n})$
- 3. Asymptotic normality:  $u_q^2 \stackrel{\text{def}}{=} \alpha^{\mathsf{T}} \Sigma_{11} \alpha$ ,  $\forall \alpha \in \mathbb{R}^q$ ,  $\|\alpha\| < \infty$ ,

$$n^{1/2} u_q^{-1} \alpha^{\mathsf{T}} (\beta^1 - \hat{\beta}^1) \xrightarrow{\mathcal{L}} \mathsf{N} \left\{ 0, \frac{(1-\tau)\tau}{f^2(\gamma^*)} \right\}$$

where  $\gamma^*$  is the  $\tau {\rm th}$  quantile and f is the pdf of  $\varepsilon$ 



#### **Risk-Return Asset Allocation**

Log returns  $X_t \in \mathbb{R}^p$ :

$$\min_{w_t \in \mathbb{R}^p} \quad \sigma_{P,t}^2(w_t) \stackrel{\text{def}}{=} w_t^\top \Sigma_t w_t$$
s.t.  $\mu_{P,t}(w_t) = r_T,$ 
 $w_t^\top \mathbf{1}_p = 1,$ 
 $w_{i,t} \ge 0$ 
(6)

where  $r_T$  "target" return,  $\Sigma_t \stackrel{\text{def}}{=} E_{t-1}\{(X_t - \mu)(X_t - \mu)^{\top}\}, \Sigma_t \text{ is modeled with a GARCH model } \bullet \text{ Details } \bullet \text{ Back to "Benchmark Strategies"}$ 

Return to "TEDAS Gestalten"



## The Orthogonal GARCH Model

⊡  $X_t \in \mathbb{R}^{n \times p}$ ,  $\Gamma_t = B_t \in \mathbb{R}^{p \times p}$  matrix of standardized eigenvectors of  $n^{-1}X_t^\top X_t$  ordered according to decreasing magnitude of eigenvalues

$$F_t = P_t \stackrel{\text{def}}{=} X_t \Gamma_t \text{ PCs of } X_t$$

• factors 
$$f$$
, introduce noise  $u_i$ , i.e.  
 $y_j = b_{j1}f_1 + b_{j2}f_2 + \ldots + b_{jk}f_k + u_i$  or  $Y_t = F_tB_t^\top + U_t$ 

• then  $\Sigma_t = \operatorname{Var}(X_t) = \operatorname{Var}(F_t B_t^{\top}) + \operatorname{Var}(U_t) = B_t \Delta_t B_t^{\top} + \Omega_t$ ,  $\Delta_t = \operatorname{Var}(F_t)$  diagonal matrix of PC variances at t

Return to "Risk-Return Asset Allocation"



## **Dynamic Conditional Correlations Model**

Assume:  $r_t | \mathcal{F}_{t-1} \sim N(0, D_t R_t D_t)$ ,  $\varepsilon_t = D_t^{-1} r_t$ ,

$$D_t^2 = \operatorname{diag}(\omega_i) + \operatorname{diag}(\alpha_i) \odot r_{t-1} r_{t-1}^\top + \operatorname{diag}(\beta_i) \odot D_{t-1}^2,$$
  

$$Q_t = S \odot (11^\top - A - B) + A \odot \{P_{t-1}\varepsilon_{t-1}\varepsilon_{t-1}^\top P_{t-1}\} + B \odot Q_{t-1},$$
  

$$R_t = \{\operatorname{diag}(Q_t)\}^{-1} Q_t \{\operatorname{diag}(Q_t)\}^{-1}$$

where  $r_t \in \mathbb{R}^p$ ,  $D_t = diag(\sigma_{it}) \in \mathbb{R}^{p \times p}$ ,  $\varepsilon_t \in \mathbb{R}^p$  standardized returns with  $\varepsilon_{it} \stackrel{\text{def}}{=} r_{it}\sigma_{it}^{-1}$ , 1 vector of ones;  $P_{t-1} \stackrel{\text{def}}{=} \{\text{diag}(Q_t)\}^{1/2}$ ,  $\omega_i$ ,  $\alpha_i$ ,  $\beta_i$ , A, B coefficients,  $\odot$  Hadamard (elementwise) product Return to "TEDAS Gestalten"



## The DCC Model - Continued

- correlation targeting:  $S = (1/T) \sum_{t=1}^{T} \varepsilon_t \varepsilon_t^{\top}$
- □  $Q_0 = \varepsilon_0 \varepsilon_0^\top$  positive definite, each subsequent  $Q_t$  also positive definite
- consistent but inefficient estimates: the log-likelihood function

$$L(\theta,\phi) = -\frac{1}{2} \sum_{t=1}^{T} \left\{ n \log(2\pi) + 2 \log |D_t| + \log |R_t| + \varepsilon_t^{\top} R_t^{-1} \varepsilon_t \right\},$$

where  $\theta$  parameters in D and  $\phi$  additional correlation parameters in R Back



Technical details -

## The DCC Model - Continued

Re-write:

$$L(\theta,\phi) = L_V(\theta) + L_C(\theta,\phi),$$

with volatility part  $L_V(\theta)$  and correlation part  $L_C(\theta, \phi)$ ,

$$\begin{split} \mathcal{L}_{V}(\theta) &= -\frac{1}{2} \sum_{t=1}^{T} \left\{ n \log(2\pi) + \log |D_{t}|^{2} + r_{t}^{\top} D_{t}^{-2} r_{t} \right\} \\ &= -\frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} \left\{ \log(2\pi) + \log(\sigma_{it}^{2}) + \frac{r_{it}^{2}}{\sigma_{it}^{2}} \right\}, \end{split}$$

$$L_{C}(\theta,\phi) = -\frac{1}{2} \sum_{t=1}^{T} \left\{ \log |R_{t}| + \varepsilon_{t}^{\top} R_{t}^{-1} \varepsilon_{t} - \varepsilon_{t}^{\top} \varepsilon_{t} \right\}.$$



#### **Cornish-Fisher VaR Optimization**

Log returns  $X_t \in \mathbb{R}^p$ :

$$\begin{array}{ll} \underset{w \in \mathbb{R}^{d}}{\text{minimize}} & W_{t}\{-q_{\alpha}(w_{t}) \cdot \sigma_{p}(w_{t})\}\\ \text{subject to} & w_{t}^{\top}\mu = \mu_{p}, \ w_{t}^{\top}1 = 1, \ w_{t,i} \geq 0 \end{array}$$

$$\begin{array}{ll} \text{here } W_{t} \stackrel{\text{def}}{=} W_{0} \cdot \prod_{j=1}^{t-1} w_{t-j}^{\top}(1 + X_{t-j}), \ \tilde{w}, \ W_{0} \ \text{initial wealth}, \\ \sigma_{p}^{2}(w) \stackrel{\text{def}}{=} w_{t}^{\top}\Sigma_{t}w_{t}, \end{array}$$

$$q_{\alpha}(w) \stackrel{\text{def}}{=} z_{\alpha} + (z_{\alpha}^{2} - 1)\frac{S_{p}(w)}{6} + (z_{\alpha}^{3} - 3z_{\alpha})\frac{K_{p}(w)}{24} - (2z_{\alpha}^{3} - 5z_{\alpha})\frac{S_{p}(w)^{2}}{36}, \\ \text{here } S_{p}(w) \ \text{skewness}, \ K_{p}(w) \ \text{kurtosis}, \ z_{\alpha} \ \text{is N}(0, 1) \ \alpha \text{-quantile If} \\ S_{p}(w), \ K_{p}(w) \ \text{zero, then obtain Markowitz allocation} \end{array}$$

Return to "TEDAS Gestalten"



## Risk Parity (Equal risk contribution)

Let  $\sigma(w) = \sqrt{w^{\top} \Sigma w}$ . Euler decomposition:

$$\sigma(w) \stackrel{\text{def}}{=} \sum_{i=1}^{n} \sigma_i(w) = \sum_{i=1}^{n} w_i \frac{\sigma(w)}{\partial w_i}$$

where  $\frac{\sigma(w)}{\partial w_i}$  is the marginal risk contribution and  $\sigma_i(w) = w_i \frac{\sigma(w)}{\partial w_i}$  the risk contribution of i-th asset. The idea of ERC strategy is to find risk balanced portfolio, such that:

$$\sigma_i(w) = \sigma_j(w)$$

i.e. the risk contribution is the same for all assets of the portfolio • Return to "Benchmark Strategies"



## 60/40 allocation strategy

60/40 portfolio allocation strategy implies the investing of 60% of the portfolio value in stocks (often via a broad index such as S&P500) and 40% in government or other high-quality bonds, with regular rebalancing to keep proportions steady.

• Return to "Benchmark Strategies"



## Regularity Conditions for Adaptive Lasso QR

- A1 Sampling and smoothness:  $\forall x$  in the support of  $X_i$ ,  $\forall y \in \mathbb{R}$ ,  $f_{Y_i|X_i}(y|x)$ ,  $f \in \mathcal{C}^k(\mathbb{R})$ ,  $|f_{Y_i|X_i}(y|x)| < \overline{f}$ ,  $|f'_{Y_i|X_i}(y|x)| < \overline{f'}$ ;  $\exists \underline{f}$ , such that  $f_{Y_i|X_i}(x^\top \beta_\tau | x) > \underline{f} > 0$
- A2 Restricted identifiability and nonlinearity: let  $\delta \in \mathbb{R}^{p}$ ,  $T \subset \{0, 1, ..., p\}$ ,  $\delta_{T}$  such that  $\delta_{Tj} = \delta_{j}$  if  $j \in T$ ,  $\delta_{Tj} = 0$  if  $j \notin T$ ;  $T = \{0, 1, ..., s\}$ ,  $\overline{T}(\delta, m) \subset \{0, 1, ..., p\} \setminus T$ , then  $\exists m \ge 0, c \ge 0$  such that  $\inf_{\delta \in A, \delta \neq 0} \frac{\delta^{\mathsf{T}} \mathsf{E}(X_{i}X_{i}^{\mathsf{T}})\delta}{\|\delta_{T \cup \overline{T}(\delta,m)}\|^{2}} > 0, \qquad \frac{3\underline{f}^{3/2}}{8\overline{f}'} \inf_{\delta \in A, \delta \neq 0} \frac{\mathsf{E}[|X_{i}^{\mathsf{T}}\delta|^{2}]^{3/2}}{\mathsf{E}[|X_{i}^{\mathsf{T}}\delta|^{3}]} > 0,$

where  $A \stackrel{\text{def}}{=} \{ \delta \in \mathbb{R}^p : \| \delta_{\mathcal{T}^c} \|_1 \leq c \| \delta_{\mathcal{T}} \|_1, \| \delta_{\mathcal{T}^c} \|_0 \leq n \}$ 

Back



## **Regularity Conditions - Continued**

A3 Growth rate of covariates:

$$\frac{q^3\{\log(n\vee p)\}^{2+\eta}}{n}\to 0, \eta>0$$

A4 Moments of covariates: Cramér condition

$$\mathsf{E}[|x_{ij}|^k] \le 0.5 C_m M^{k-2} k!$$

for some constants  $C_m$ , M,  $orall k \geq$  2, j=1,...,p

A5 Well-separated regression coefficients:  $\exists b_0 > 0$ , such that  $\forall j \leq q$ ,  $|\hat{eta}_j| > b_0$ 



#### **Asymetric Laplace Distribution**

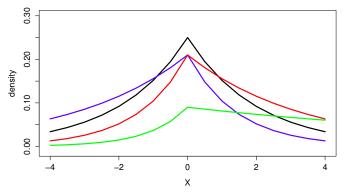


Figure 22: Standart ALD:  $\tau = 0.3, \tau = 0.5, \tau = 0.7, \tau = 0.1$ 



Technical details

#### Quantile regression using ALD

• Yu & Moyeed(2001)  $Y_i \sim ALD(\mu, \sigma, \tau)$ , if its pdf is given by

$$f(y|\mu,\sigma,\tau) = \frac{\tau(1-\tau)}{\sigma} \exp\left\{\rho_{\tau} \frac{(y-\mu)}{\sigma}\right\}$$

where  $\mu$  is location,  $\sigma$  - scale and  $\tau$ -skewness parameters, and loss function  $\rho_{\tau}(u) = u\{\tau - I(u < 0)\}$ 

■ Sanches et. al (2013)

$$y_i = x_i^\top \beta_\tau + \varepsilon_i, i = 1, \dots, n$$

Re-write:

$$Y_i | U_i = u_i \sim N(x_i \beta_{\tau} + \theta u_i, p_{\tau}^2 \sigma u_i)$$
$$U_i \sim Exp(\sigma), \ i = 1, \dots, n$$

here 
$$heta=rac{1-2 au}{ au(1- au)}$$
 and  $p_{ au}^2=rac{2}{ au(1- au)}$   $igcap$  Back to "Choose



#### References

 W. K. Härdle, S. Nasekin, D. K. C. Lee , K. F. Phoon TEDAS - Tail Event Driven Asset Allocation
 SFB 649 Discussion Paper 2014-032: Jun, 2014

🔋 L. B. Sanchez V. H. Lachos, F. V. Labra

*Likelihood Based Inference for Quantile Regression Using the Asymmetric Laplace Distribution* 

Discussion Paper, Universidade Estadual de Campinas: Sep, 2013

